direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×D33, C6⋊2D22, C22⋊2D6, C33⋊2C23, C66⋊2C22, (C2×C66)⋊3C2, (C2×C22)⋊5S3, (C2×C6)⋊3D11, C11⋊2(C22×S3), C3⋊2(C22×D11), SmallGroup(264,38)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — C22×D33 |
Generators and relations for C22×D33
G = < a,b,c,d | a2=b2=c33=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 548 in 64 conjugacy classes, 31 normal (9 characteristic)
C1, C2, C2, C3, C22, C22, S3, C6, C23, C11, D6, C2×C6, D11, C22, C22×S3, C33, D22, C2×C22, D33, C66, C22×D11, D66, C2×C66, C22×D33
Quotients: C1, C2, C22, S3, C23, D6, D11, C22×S3, D22, D33, C22×D11, D66, C22×D33
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 97)(8 98)(9 99)(10 67)(11 68)(12 69)(13 70)(14 71)(15 72)(16 73)(17 74)(18 75)(19 76)(20 77)(21 78)(22 79)(23 80)(24 81)(25 82)(26 83)(27 84)(28 85)(29 86)(30 87)(31 88)(32 89)(33 90)(34 124)(35 125)(36 126)(37 127)(38 128)(39 129)(40 130)(41 131)(42 132)(43 100)(44 101)(45 102)(46 103)(47 104)(48 105)(49 106)(50 107)(51 108)(52 109)(53 110)(54 111)(55 112)(56 113)(57 114)(58 115)(59 116)(60 117)(61 118)(62 119)(63 120)(64 121)(65 122)(66 123)
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 49)(9 50)(10 51)(11 52)(12 53)(13 54)(14 55)(15 56)(16 57)(17 58)(18 59)(19 60)(20 61)(21 62)(22 63)(23 64)(24 65)(25 66)(26 34)(27 35)(28 36)(29 37)(30 38)(31 39)(32 40)(33 41)(67 108)(68 109)(69 110)(70 111)(71 112)(72 113)(73 114)(74 115)(75 116)(76 117)(77 118)(78 119)(79 120)(80 121)(81 122)(82 123)(83 124)(84 125)(85 126)(86 127)(87 128)(88 129)(89 130)(90 131)(91 132)(92 100)(93 101)(94 102)(95 103)(96 104)(97 105)(98 106)(99 107)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)
(1 131)(2 130)(3 129)(4 128)(5 127)(6 126)(7 125)(8 124)(9 123)(10 122)(11 121)(12 120)(13 119)(14 118)(15 117)(16 116)(17 115)(18 114)(19 113)(20 112)(21 111)(22 110)(23 109)(24 108)(25 107)(26 106)(27 105)(28 104)(29 103)(30 102)(31 101)(32 100)(33 132)(34 98)(35 97)(36 96)(37 95)(38 94)(39 93)(40 92)(41 91)(42 90)(43 89)(44 88)(45 87)(46 86)(47 85)(48 84)(49 83)(50 82)(51 81)(52 80)(53 79)(54 78)(55 77)(56 76)(57 75)(58 74)(59 73)(60 72)(61 71)(62 70)(63 69)(64 68)(65 67)(66 99)
G:=sub<Sym(132)| (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,73)(17,74)(18,75)(19,76)(20,77)(21,78)(22,79)(23,80)(24,81)(25,82)(26,83)(27,84)(28,85)(29,86)(30,87)(31,88)(32,89)(33,90)(34,124)(35,125)(36,126)(37,127)(38,128)(39,129)(40,130)(41,131)(42,132)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,113)(57,114)(58,115)(59,116)(60,117)(61,118)(62,119)(63,120)(64,121)(65,122)(66,123), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,34)(27,35)(28,36)(29,37)(30,38)(31,39)(32,40)(33,41)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,118)(78,119)(79,120)(80,121)(81,122)(82,123)(83,124)(84,125)(85,126)(86,127)(87,128)(88,129)(89,130)(90,131)(91,132)(92,100)(93,101)(94,102)(95,103)(96,104)(97,105)(98,106)(99,107), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,131)(2,130)(3,129)(4,128)(5,127)(6,126)(7,125)(8,124)(9,123)(10,122)(11,121)(12,120)(13,119)(14,118)(15,117)(16,116)(17,115)(18,114)(19,113)(20,112)(21,111)(22,110)(23,109)(24,108)(25,107)(26,106)(27,105)(28,104)(29,103)(30,102)(31,101)(32,100)(33,132)(34,98)(35,97)(36,96)(37,95)(38,94)(39,93)(40,92)(41,91)(42,90)(43,89)(44,88)(45,87)(46,86)(47,85)(48,84)(49,83)(50,82)(51,81)(52,80)(53,79)(54,78)(55,77)(56,76)(57,75)(58,74)(59,73)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67)(66,99)>;
G:=Group( (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,73)(17,74)(18,75)(19,76)(20,77)(21,78)(22,79)(23,80)(24,81)(25,82)(26,83)(27,84)(28,85)(29,86)(30,87)(31,88)(32,89)(33,90)(34,124)(35,125)(36,126)(37,127)(38,128)(39,129)(40,130)(41,131)(42,132)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,113)(57,114)(58,115)(59,116)(60,117)(61,118)(62,119)(63,120)(64,121)(65,122)(66,123), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,34)(27,35)(28,36)(29,37)(30,38)(31,39)(32,40)(33,41)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,118)(78,119)(79,120)(80,121)(81,122)(82,123)(83,124)(84,125)(85,126)(86,127)(87,128)(88,129)(89,130)(90,131)(91,132)(92,100)(93,101)(94,102)(95,103)(96,104)(97,105)(98,106)(99,107), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,131)(2,130)(3,129)(4,128)(5,127)(6,126)(7,125)(8,124)(9,123)(10,122)(11,121)(12,120)(13,119)(14,118)(15,117)(16,116)(17,115)(18,114)(19,113)(20,112)(21,111)(22,110)(23,109)(24,108)(25,107)(26,106)(27,105)(28,104)(29,103)(30,102)(31,101)(32,100)(33,132)(34,98)(35,97)(36,96)(37,95)(38,94)(39,93)(40,92)(41,91)(42,90)(43,89)(44,88)(45,87)(46,86)(47,85)(48,84)(49,83)(50,82)(51,81)(52,80)(53,79)(54,78)(55,77)(56,76)(57,75)(58,74)(59,73)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67)(66,99) );
G=PermutationGroup([[(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,97),(8,98),(9,99),(10,67),(11,68),(12,69),(13,70),(14,71),(15,72),(16,73),(17,74),(18,75),(19,76),(20,77),(21,78),(22,79),(23,80),(24,81),(25,82),(26,83),(27,84),(28,85),(29,86),(30,87),(31,88),(32,89),(33,90),(34,124),(35,125),(36,126),(37,127),(38,128),(39,129),(40,130),(41,131),(42,132),(43,100),(44,101),(45,102),(46,103),(47,104),(48,105),(49,106),(50,107),(51,108),(52,109),(53,110),(54,111),(55,112),(56,113),(57,114),(58,115),(59,116),(60,117),(61,118),(62,119),(63,120),(64,121),(65,122),(66,123)], [(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,49),(9,50),(10,51),(11,52),(12,53),(13,54),(14,55),(15,56),(16,57),(17,58),(18,59),(19,60),(20,61),(21,62),(22,63),(23,64),(24,65),(25,66),(26,34),(27,35),(28,36),(29,37),(30,38),(31,39),(32,40),(33,41),(67,108),(68,109),(69,110),(70,111),(71,112),(72,113),(73,114),(74,115),(75,116),(76,117),(77,118),(78,119),(79,120),(80,121),(81,122),(82,123),(83,124),(84,125),(85,126),(86,127),(87,128),(88,129),(89,130),(90,131),(91,132),(92,100),(93,101),(94,102),(95,103),(96,104),(97,105),(98,106),(99,107)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)], [(1,131),(2,130),(3,129),(4,128),(5,127),(6,126),(7,125),(8,124),(9,123),(10,122),(11,121),(12,120),(13,119),(14,118),(15,117),(16,116),(17,115),(18,114),(19,113),(20,112),(21,111),(22,110),(23,109),(24,108),(25,107),(26,106),(27,105),(28,104),(29,103),(30,102),(31,101),(32,100),(33,132),(34,98),(35,97),(36,96),(37,95),(38,94),(39,93),(40,92),(41,91),(42,90),(43,89),(44,88),(45,87),(46,86),(47,85),(48,84),(49,83),(50,82),(51,81),(52,80),(53,79),(54,78),(55,77),(56,76),(57,75),(58,74),(59,73),(60,72),(61,71),(62,70),(63,69),(64,68),(65,67),(66,99)]])
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 6A | 6B | 6C | 11A | ··· | 11E | 22A | ··· | 22O | 33A | ··· | 33J | 66A | ··· | 66AD |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 6 | 6 | 6 | 11 | ··· | 11 | 22 | ··· | 22 | 33 | ··· | 33 | 66 | ··· | 66 |
size | 1 | 1 | 1 | 1 | 33 | 33 | 33 | 33 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
72 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D6 | D11 | D22 | D33 | D66 |
kernel | C22×D33 | D66 | C2×C66 | C2×C22 | C22 | C2×C6 | C6 | C22 | C2 |
# reps | 1 | 6 | 1 | 1 | 3 | 5 | 15 | 10 | 30 |
Matrix representation of C22×D33 ►in GL3(𝔽67) generated by
1 | 0 | 0 |
0 | 66 | 0 |
0 | 0 | 66 |
66 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 39 | 25 |
0 | 42 | 51 |
1 | 0 | 0 |
0 | 31 | 57 |
0 | 29 | 36 |
G:=sub<GL(3,GF(67))| [1,0,0,0,66,0,0,0,66],[66,0,0,0,1,0,0,0,1],[1,0,0,0,39,42,0,25,51],[1,0,0,0,31,29,0,57,36] >;
C22×D33 in GAP, Magma, Sage, TeX
C_2^2\times D_{33}
% in TeX
G:=Group("C2^2xD33");
// GroupNames label
G:=SmallGroup(264,38);
// by ID
G=gap.SmallGroup(264,38);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-11,323,6004]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^33=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations